Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 95(3-1): 032403, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28415278

RESUMO

Spatiotemporal disorder has been recently associated to the occurrence of anomalous nonergodic diffusion of molecular components in biological systems, but the underlying microscopic mechanism is still unclear. We introduce a model in which a particle performs continuous Brownian motion with changes of diffusion coefficients induced by transient molecular interactions with diffusive binding partners. In spite of the exponential distribution of waiting times, the model shows subdiffusion and nonergodicity similar to the heavy-tailed continuous time random walk. The dependence of these properties on the density of binding partners is analyzed and discussed. Our work provides an experimentally testable microscopic model to investigate the nature of nonergodicity in disordered media.

2.
Phys Rev E ; 96(5-1): 052140, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29347809

RESUMO

We introduce a model in which a particle performs a continuous-time random walk (CTRW) coupled to an environment with Ising dynamics. The particle shows locally varying diffusivity determined by the geometrical properties of the underlying Ising environment, that is, the diffusivity depends on the size of the connected area of spins pointing in the same direction. The model shows anomalous diffusion when the Ising environment is at critical temperature. We show that any finite scale introduced by a temperature different from the critical one, or a finite size of the environment, cause subdiffusion only during a transient time. The characteristic time, at which the system returns to normal diffusion after the subdiffusive plateau depends on the limiting scale and on how close the temperature is to criticality. The system also displays apparent ergodicity breaking at intermediate time, while ergodicity breaking at longer time occurs only under the idealized infinite environment at the critical temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...